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Abstract. We suggest a systematic procedure for classifying partial differential equations (PDEs)
invariant with respect to low-dimensional Lie algebras. This procedure is a proper synthesis
of the infinitesimal Lie method, the technique of equivalence transformations and the theory of
classification of abstract low-dimensional Lie algebras. As an application, we consider the problem
of classifying heat conductivity equations in one variable with nonlinear convection and source
terms. We have derived a complete classification of nonlinear equations of this type admitting
nontrivial symmetry. It is shown that there are 3, 7, 28 and 12 inequivalent classes of PDEs of the
type considered that are invariant under the one-, two-, three- and four-dimensional Lie algebras,
correspondingly. Furthermore, we prove that any PDE belonging to the class under study and
admitting the symmetry group of a dimension higher than four is locally equivalent to a linear
equation. This classification is compared with existing group classifications of nonlinear heat
conductivity equations and one of the conclusions is that all of them can be obtained within the
framework of our approach. Furthermore, a number of new invariant equations are constructed
which have rich symmetry properties and, therefore, may be used for mathematical modelling of,
say, nonlinear heat transfer processes.

1. Introduction

Traditionally, group-theoretical (symmetry) analysis of differential equations has consisted of
two interrelated problems. The first problem consists of finding the maximal Lie transformation
(symmetry) group admitted by a given equation. The second problem is one of classifying
differential equations that admit a prescribed symmetry groupG. The principal tool for
handling both problems is the classical infinitesimal routine developed by S Lie (see, e.g.,
[1–3]). It reduces the problem to finding the corresponding Lie symmetry algebra of
infinitesimal operators whose coefficients are found as solutions of some over-determined
system of linear partial differential equations (PDEs).

Solving a classification problem for some groupG provides us with an exhaustive
description of differential equations that are invariant with respect to this group and,
consequently, allows analysis by means of the powerful Lie group technique. This is not
just a matter of curiosity but the fundamental result that is used intensively in applications.
An experimentalist, who believes that nature is governed by symmetry laws, is provided with
a criterion (symmetry selection principle) for choosing a proper nonlinear model describing
a real process under investigation. Normally, a researcher has some freedom in choosing the
nonlinearities of the model and it would only be natural to take those nonlinearities that provide
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the highest symmetry for the model. The classical example is the Lorentz–Poincaré–Einstein
relativity principle, which is to be respected by a physically meaningful model of relativistic
field theory. From the point of view of the group theory the above principle is a requirement for
a model under study to be invariant under the Poincaré group (for more details, see, e.g., [3,4]).
Consequently, finding all possible Poincaré-invariant equations yields a complete account of
all possible ways to model processes of relativistic field theory by PDEs.

In the overwhelming majority of papers devoted to solving classification problems, a
representation of symmetry groupG (symmetry algebrag) is fixed. Given this condition,
the problem is solved by a straightforward application of the Lie algorithm. However, it
becomes much more complicated if no specific representation of the symmetry algebrag is
given. Then, utilizing the Lie algorithm directly, one arrives at the major difficulties coming
from the necessity to find the maximal symmetry algebra and solve the classification problem,
simultaneously. A principal idea enabling one to overcome the above difficulties was suggested
by S Lie. Indeed, his method for obtaining all ordinary differential equations in one variable
admitting non-trivial symmetry algebras [5, 6] instructs us what needs to be done in the case
in question. First, we should construct all the possible inequivalent realizations of symmetry
algebras within some class of Lie vector fields. If we succeed in doing this, then symmetry
algebras will be specified, so that we can directly apply the Lie infinitesimal algorithm thus
obtaining inequivalent classes of invariant equations. In this way, S Lie obtained his famous
classification of realizations of all inequivalent complex Lie algebras on a plane [5,6]. Recently,
Lie’s classification has been used by Olver and Heredero [7] in order to obtain a classification
of nonlinear wave equations in (1+1) dimensions that admit non-trivial spatial symmetries (i.e.
symmetries not changing the temporal variable). What is more, Gonzalez-Lopezet al [8, 9]
have classified quasi-exactly solvable models on a plane making use of their classification of
real Lie algebras on a plane [5,6].

A systematic implementation of these ideas for PDEs has been suggested by Ovsjannikov
[1]. His approach is based on the concept of the equivalence group, which is the Lie
transformation group acting in the properly extended space of independent variables, functions
and their derivatives and preserving the class of PDEs under study. It is possible to modify
the Lie algorithm in order to make it applicable for computing this group [1]. In the second
step, the optimal system of subgroups of the equivalence group is constructed. The next step
consists of utilizing the Lie algorithm for obtaining specific PDEs belonging to the class under
study which are invariant with respect to the above-mentioned subgroups.

A further development of the Ovsjannikov approach has been undertaken by Akhatov
et al [10,11]. They obtained a number of classification results for nonlinear gas dynamics and
diffusion equations. These ideas have also been utilized by Torrisi, Valenti and Tracina in order
to perform preliminary group classification of some nonlinear diffusion and heat conductivity
equations [12, 13]. Ibragimov and Torrisi have obtained a number of important results on
the group classification of nonlinear detonation equations [14] and nonlinear hyperbolic-type
equations [15]. Note that there is a number of papers (see, e.g., [16] and the references therein)
devoted to a direct computation of equivalence groups of some PDEs. Being somewhat more
involved, this approach has the merit of providing the possibility of findingdiscreteequivalence
groups or even non-local ones.

The Ovsjannikov approach works smoothly provided an equivalence group is finite-
dimensional. However, if the class of PDEs under study contains arbitrary functions of several
arguments, then it could well be that it has an infinite-parameter equivalence group. The
problem of subgroup classification of infinite-parameter Lie groups is completely open by now
which makes a direct application of the Ovsjannikov approach problematic. Consequently,
there is an evident need for the latter to be modified to become applicable to the case of
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infinite-parameter equivalence groups.
A possible way of modifying the Ovsjannikov approach is suggested by the manner in

which physicists construct nonlinear generalizations of the linear wave equations. They take
a specific representation of the Poincaré group realized on the solution set of the linear model
and require that its nonlinear generalization should inherit this symmetry (for further details
see, e.g. [3]). This approach makes the classification problem fairly easy to implement, since
a representation of the symmetry algebra is fixed. A logical step forward is not to fixa priori
a specific realization of the symmetry algebra but to fix the class of Lie vector fields within
which this realization is searched for. It is this idea that enabled researchers to find principally
new nonlinear realizations of the Euclid [4], Galilei [4, 17, 18], extended Galilei [17, 18],
Schr̈odinger [17, 18], Poincaré [4] and extended Poincaré [19, 20] algebras. These results, in
their turn, yield broad classes of new Galilei- and Poincaré-invariant nonlinear wave equations.

What we suggest in the present paper is a proper combination of the above-described
approaches that enables a systematic treatment of a classification problem for the case of
an infinite-parameter equivalence group admitted by the class of PDEs under study. We
perform group classification for the class of parabolic-type equations describing nonlinear
heat conductivity processes

ut = uxx + F(t, x, u, ux) (1.1)

whereu = u(t, x) is a smooth real-valued function,ut = ∂u/∂t, ux = ∂u/∂x and so on,
F is a sufficiently smooth real-valued function. As shown below, a direct application of
the Ovsjannikov approach is not possible since the equivalence group admitted by the above
equation is an infinite-parameter one. Due to this reason, a complete group classification has
only been obtained for particular cases of (1.1) [21–25].

The paper has the following structure. In section 2 we introduce the general method
and necessary definitions and notions. Section 3 is devoted to computing and analysing the
equivalence group admitted by the class of PDEs (1.1). In section 4 we carry out the preliminary
group classification of (1.1): namely, we give a complete description of locally inequivalent
nonlinear PDEs of the form (1.1) that are invariant with respect to one-, two- and three-
dimensional Lie algebras. In section 5 we present all inequivalent PDEs (1.1) admitting four-
dimensional Lie algebras. Next, for each of the equations obtained we compute the maximal
Lie symmetry algebra, thus obtaining the complete group classification of the corresponding
models.

2. Description of the method

Our approach to group classification of PDEs is based on the following facts:

• A PDE having a nontrivial symmetry admits some finite- or infinite-dimensional Lie
algebra of infinitesimal operators whose type is completely determined by the structure
constants. Furthermore, if the symmetry algebra is infinite-dimensional, then, as a rule, it
contains some finite-dimensional Lie algebra (for example, the centreless Virasoro algebra
contains the algebrasl(2,R)).
• Abstract Lie algebras of up to five dimensions have already been classified [26–28].
• Equivalence transformations preserving the particular class of PDEs under study do not

change the structure constants of the Lie algebra admitted.

Taking into account the above facts we formulate the following approach to group
classification of nonlinear heat conductivity equations (1.1):
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(1) First of all we find the most general form of infinitesimal operators admitted by PDEs
(1.1). To this end we solve those determining equations that do not involve the function
F . This yields a classI to which any symmetry of (1.1) should belong. Next, using an
infinitesimal or direct approach we construct the equivalence groupGE of the class of
PDEs (1.1). Evidently, the groupGE sets an equivalence relation onI (two elements of
GE are called equivalent if they are transformed into one another with a transformation
fromGE ). We denote this relation asE .

(2) In the second step, we find realizations of one-, two-, three-, four- and five-dimensional
Lie algebras within the classI up to the equivalence relationE . To this end we use
the classification of low-dimensional abstract Lie algebras obtained by Mubarakzyanov
[26,27]

(3) Next, considering the obtained realizations of low-dimensional Lie algebras as symmetry
algebras of the PDE (1.1) we classify all possible forms of functionsF that provide
invariance of the corresponding PDE with respect to this algebra. As a result, we get
a complete classification of PDEs (1.1) admitting Lie symmetry algebras of up to five
dimensions.

(4) In the final step, we apply the Lie infinitesimal algorithm for obtaining the maximal
symmetry algebras admitted by those PDEs (1.1) that are invariant with respect to four-
and five-dimensional Lie algebras. This is done straightforwardly, since the corresponding
invariant PDEs (1.1) contains no arbitrary functions.

Note that the above approach does not allow for a complete group classification of
PDEs (1.1), since there might exist realizations of higher symmetry algebras that do not contain
four- or five-dimensional subalgebras. In fact, to get a full solution of classification problem
one still has to be able to perform an exhaustive description of all inequivalent subalgebras of
the Lie algebra of the infinite-parameter equivalence groupGE . However, in the case under
consideration our approach enables one to solve completely the group classification problem
for (1.1), since there are essentially no nonlinear PDEs of the form (1.1) whose symmetry
algebra has a dimension higher than four.

It is also clear, how to modify the above approach in order to classify PDEs admitting
some prescribed symmetry algebra (say, the Galilei algebra). In the second step, one has to
fix the corresponding structure constants and find all inequivalent realizations of the Galilei
algebra within the classI. Next, the maximal symmetry algebra is computed which yields the
complete classification of Galilei-invariant PDEs of the form (1.1).

3. General analysis of symmetry properties of equation (1.1)

As the first step of the group classification of the PDE (1.1), we find the most general form of
the infinitesimal operator of the Lie transformation group admitted. Furthermore, we construct
the equivalence group of the class of PDEs (1.1).

Following the general Lie algorithm [1,2] we are looking for an infinitesimal operator of
the maximal symmetry group admitted by (1.1) in the form

Q = τ∂t + ξ∂x + η∂u (3.1)

whereτ = τ(t, x, u), ξ = ξ(t, x, u), η(t, x, u) are real-valued smooth functions defined in
the spaceX ⊗ U of independentt, x and dependentu = u(t, x) variables. The criterion for
equation (1.1) to be invariant with respect to operatorQ (3.1) reads as

(ϕt − ϕxx − τFt − ξFx − ηFu − ϕxFux )|(1.1) = 0. (3.2)
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Here

ϕt = Dt(η)− utDt(τ )− uxDt(ξ)

ϕx = Dx(η)− utDx(τ )− uxDx(ξ)

ϕxx = Dx(ϕ
x)− utxDx(τ )− uxxDx(ξ)

(3.3)

whereDt,Dx are total differentiation operators defined in an appropriately prolonged space
X ⊗ U :

Dt = ∂t + ut∂u + utt ∂ut + utx∂ux + · · ·
Dx = ∂x + ux∂u + uxx∂ux + utx∂ut + · · · . (3.4)

Splitting (3.2) in a usual way and solving equations that do not involveF , we get the
forms of the coefficientsτ, ξ of the operatorQ

τ = 2a(t) ξ = ȧ(t)x + b(t)

wherea(t), b(t) are arbitrary smooth functions andȧ(t) = da
dt . Furthermore, the functions

a(t), b(t), η = f (t, x, u) andF(t, x, u, ux) have to satisfy the PDE

ft − ux(äx + ḃ) + (fu − 2ȧ)F = fxx + 2uxfxu + u2
xfuu + 2aFt

+(ȧx + b)Fx + fFu + fxFux + ux(fu − ȧ)Fux . (3.5)

Consequently, the maximal symmetry group admitted by equation (1.1) is generated by
an infinitesimal operator of the form

Q = 2a(t)∂t + (ȧ(t)x + b(t))∂x + f (t, x, u)∂u (3.6)

functionsa, b, f, F fulfilling relation (3.5).
Evidently, if we impose no restrictions on the choice of the functionF , then the

infinitesimal operatorQ equals zero and, consequently, the symmetry group of the nonlinear
heat conductivity equation (1.1) reduces to a trivial group of the identity transformations.
Non-trivial symmetry groups appear, if we specify the sourceF in an appropriate way.

As we mentioned in the introduction, there are different ways to construct the equivalence
groupGE for the class of PDEs (1.1). We use the direct method for finding the groupGE .

Let

τ = α(t, x, u) ξ = β(t, x, u) v = γ (t, x, u) (3.7)

be an invertible change of variables that transforms the class of PDEs (1.1) into itself:

vτ = vξξ +G(τ, ξ, v, vξ ). (3.8)

Computing the derivativeux yields

ux = vταx + vξβx − γx
γu − vταu − vξβu .

On the other hand, in view of the arbitrariness of functionF it follows from (3.8) that the
relation of the form

ux = g(τ, ξ, v, vξ )
holds. Hence we conclude that in (3.7)αx = αu = 0, orα = α(t), α̇ ≡ dα

dt 6= 0.
Computing the derivativesut , uxx taking into account the relationsαx = αu = 0⇔ α =

α(t), α̇ 6= 0 we get

ut = vτ α̇(γu − vξβu)−1 + θ1(τ, ξ, v, vξ )

uxx = vξξ {β2
x (γu − vξβu)−1 + 2βxβu(vξβx − γx)(γu − vξβu)−2

+β2
u(vξβx − γx)2(γu − vξβu)−3} + θ2(τ, ξ, v, vξ )
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with some functionθ2. Taking into consideration (3.8) yields the relation

α̇(γu − vξβu)2 = β2
x (γu − vξβu)2 + 2βxβu(vξβx − γx)(γu − vξβu) + β2

u(vξβx − γx)2.
As α, γ, β do not depend onux , we can split the left-hand side of the above equation byvξ
thus getting the system of determining equations for the functionsα, β, γ

(α̇ − β2
x )γ

2
u = γxβu(γxβu − 2βxγu)

−2(α̇ − β2
x )γuβu = 2β2

xγuβu

α̇β2
u = 0.

As α̇ 6= 0, it follows from the last equation thatβu = 0. In view of this fact the system in
question reduces to a single equation

(α̇ − β2
x )γ

2
u = 0.

Since transformation of variables (3.7) is invertible, the relationγu 6= 0 holds. Hence we
get α̇ = β2

x . Consequently, ˙α > 0, β = ±√α̇x + ρ(t). Summing up, we conclude that the
equivalence groupGE of the class of PDEs (1.1) reads as

t̄ = T (t) x̄ = ε
√
Ṫ (t)x +X(t) ū = U(t, x, u) (3.9)

whereṪ (t) > 0,Uu 6= 0, Ṫ = dT
dt , ε = ±1.

Note that the infinitesimal method for finding the infinitesimal operator of the equivalence
group yields the following class of operators (we skip the derivation of this formula):

E = α(t)∂t + [ 1
2α̇(t)x + ρ(t)]∂x + η(t, x, u)∂u

+[ηt − ηxx + (ηu + α̇(t))F − ux( 1
2α̈(t)x + ρ̇(t))− 2uxηxu − u2

xηuu]∂F (3.10)

whereα, ρ, η = η(t, x, u) are arbitrary smooth functions.
It is not difficult to convince oneself of the fact that transformations (3.9) can be obtained

from the group transformations generated by operator (3.10) under the condition that the latter
is complemented by the discrete transformationx → −x. Consequently, both the direct
and infinitesimal approaches give the same equivalence group for the class of nonlinear heat
conductivity equations (1.1).

4. Preliminary group classification of equation (1.1)

In this section we classify equations of the form (1.1) that admit invariance algebras of up to
three dimensions. We start from describing equations admitting one-dimensional Lie algebras,
then proceed to investigation of the ones invariant with respect to two-dimensional algebras.
Using these results we describe PDEs (1.1) which admit three-dimensional Lie algebras. An
intermediate problem which is being solved, while classifying invariant equations of the
form (1.1), is describing all possible realizations of one-, two- and three-dimensional Lie
algebras by operators (3.6) within the equivalence relation (3.9). One more important remark
is that PDEs that are equivalent to linear ones are excluded from further considerations. Note
that we give the detailed calculations for the case of one-dimensional Lie algebras. For the
higher-dimensional cases we present the final results, referring the reader interested in full
details of the calculations to [29].

4.1. Nonlinear heat equations invariant under one-dimensional Lie algebras

All inequivalent realizations of one-dimensional Lie algebras having the basis elements of the
form (3.6) are given by the lemma below.
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Lemma 1. There are diffeomorphisms (3.9) that reduce operator (3.6) to one of the following
operators:

Q = ±∂t (4.1)

Q = ∂x (4.2)

Q = ∂u. (4.3)

Proof. Let an operatorQ have the form (3.6). Making the transformation (3.9) we have

Q→ Q̄ = 2aṪ ∂t̄ +
[
2a(Ẋ + 1

2xT̈ (Ṫ )
− 1

2 ) + ε(ȧx + b)
√
Ṫ
]
∂x̄

+[2aUt + (ȧx + b)Ux + fUu]∂ū.

In what follows, we have to differentiate between the casesf = 0 andf 6= 0, that is why
they are considered separately.

Case 1. f = 0. ChoosingU = U(u) in (3.9) yields

Q̄ = 2aṪ ∂t̄ + [2a(Ẋ + 1
2xT̈ (Ṫ )

− 1
2 ) + ε(ȧx + b)

√
Ṫ ]∂x̄ .

If a = 0, thenb 6= 0 (since otherwise the operatorQ is equal to zero). Therefore, choosing
T (t) in (3.9) as a solution of the equatioṅT = |b(t)|−2 we arrive at the operator

Q̄ = ±∂x̄ .
Within the space reflectionx →−x we may chooseQ′ in the formQ̄ = ∂x̄ .

Given the inequalitya 6= 0, we put in (3.9)ε = 1. ChoosingT (t), X(t) as solutions of
the system of ordinary differential equations

Ṫ − 1

2|a(t)| = 0 2a(t)Ẋ + b(t)
√
Ṫ = 0

we arrive at the operator

Q̄ = ±∂t̄ .

Case 2. f 6= 0. Provideda = b = 0, we can chooseU in (3.9) as a solution of the PDE
fUu = 1, thus getting the operator

Q̄ = ∂ū.
If the inequality|a| + |b| 6= 0 holds, then choosingU in (3.9) as a solution of the PDE

2aUt + (ȧx + b)Ux + fUu = 0 Uu 6= 0

we come to the above-considered case.
It is straightforward to check that the operators (4.1)–(4.3) cannot be transformed into one

another with a change of variables (3.9). The lemma is proved. �
Consequently, there are three inequivalent one-dimensional Lie algebras

A1
1 = 〈ε∂t 〉 A2

1 = 〈∂x〉 A3
1 = 〈∂u〉 ε = ±1.

A simple calculation shows that the corresponding invariant equations from the class (1.1)
have the form

A1
1 : ut = uxx + F(x, u, ux) (4.4)

A2
1 : ut = uxx + F(t, u, ux) (4.5)

A3
1 : ut = uxx + F(t, x, ux). (4.6)
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4.2. Nonlinear heat equations invariant under two-dimensional Lie algebras

As is well known, there are two different abstract two-dimensional Lie algebras: namely,
the commutative Lie algebraA2.1 = 〈Q1,Q2〉, [Q1,Q2] = 0 and the solvable one
A2.2 = 〈Q1,Q2〉, [Q1,Q2] = Q2.

Theorem 1. The list of two-dimensional Lie algebras having the basis operators (3.6) and
defined within the equivalence relation (3.9) is exhausted by the following algebras:

A1
2.1 = 〈∂t , ∂x〉 A2

2.1 = 〈∂t , ∂u〉
A3

2.1 = 〈∂x, α(t)∂x + ∂u〉 A4
2.1 = 〈∂u, g(t, x)∂u〉 g 6= const

A5
2.1 = 〈∂x, α(t)∂x〉 α̇ ≡ dα

dt
6= 0

A1
2.2 = 〈−t∂t − 1

2x∂x, ∂t 〉 A2
2.2 = 〈−2t∂t − x∂x, ∂x〉

A3
2.2 = 〈−u∂u, ∂u〉 A4

2.2 = 〈∂x − u∂u, ∂u〉
A5

2.2 = 〈ε∂t − u∂u, ∂u〉 ε = ±1.

Now we derive all inequivalent nonlinear heat conductivity equations (1.1), that admit
two-dimensional Lie algebras as symmetry algebras.

For the realizationsA1
2.1 andA2

2.1 the equations in question read as

A1
2.1 : ut = uxx + F̃ (u, ux) (4.7)

A2
2.1 : ut = uxx + F̃ (x, ux) (4.8)

correspondingly.
Given the realizationA3

2.1 we may use the result of (4.5) thus obtaining constraint (3.5)
for the coefficient of the operatorQ2 in the form

−α̇ux = Fu.
Hence it follows that

F = −α̇uux + F̃ (t, ux)

with an arbitrary smooth functioñF .
So the most general PDE (1.1) invariant with respect to the Lie algebraA3

2.1 reads

A3
2.1 : ut = uxx − α̇uux + F̃ (t, ux). (4.9)

Treating the algebraA4
2.1 in a similar way we represent constraint (3.5) as follows:

gt = gxx + gxFux g 6= const.

Given the relationgx = 0, the functiong is constant, i.e.,g = const. This means that the
PDE (1.1) becomes linear. To avoid this we should impose the restrictiongx 6= 0. Hence,

F = (gt − gxx)g−1
x ux + F̃ (t, x) gx 6= 0.

Summing up, we conclude that the class of PDEs of the form (1.1) invariant with respect
to the algebraA4

2.1 reads as

A4
2.1 : ut = uxx + (gt − gxx)g−1

x ux + F̃ (t, x) gx 6= 0. (4.10)

We now turn to the algebraA5
2.1. Inserting the coefficients of the operatorQ2 into (3.5)

yields

α̇ux = 0
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Table 1. Equations (1.1) admitting the algebrasA3.1, A3.2.

Algebra FunctionF

A1
3.1 G(ux), Gux 6= λ, λ ∈ R

A1
3.2 u2

xG(ω), ω = xux, G 6= λω−2, λ ∈ R
A2

3.2 t−1G(ω), ω = tu2
x , G 6= λ√ω, λ ∈ R

A3
3.2 − 1

2 t
−1u
√|ω| + t−1G(ω), ω = tu2

x

A4
3.2 −α̇α−1ux ln |ω| + uxG(t), α̇ 6= 0, ω = exux

A5
3.2 uxG(ω), ω = exux, G 6= λω−1, λ ∈ R

A6
3.2 uxG(ω), ω = eεt ux, G 6= λω−1, λ ∈ R, ε = ±1

A7
3.2 uxG(ω), ω = (ux)λeε(λt−x), λ > 0, G 6= const, ε = ±1

whence ˙α = 0. This contradicts the assumption ˙α 6= 0. Consequently, there are no equations
of the form (1.1) admittingA5

2.1 as a symmetry algebra.
Treating the algebrasAi2.2 (i = 1, . . . ,5) in a similar way we get the following invariant

equations:

A1
2.2 : ut = uxx + u2

xF̃ (u, xux) (4.11)

A2
2.2 : ut = uxx + t−1F̃ (u, tu2

x) (4.12)

A3
2.2 : ut = uxx + uxF̃ (t, x) (4.13)

A4
2.2 : ut = uxx + uxF̃ (t, e

xux) (4.14)

A5
2.2 : ut = uxx + uxF̃ (x, e

εtux) ε = ±1 (4.15)

whereF̃ is an arbitrary smooth function.
Note that equations (4.10) and (4.13) are linear and, therefore, are excluded from further

considerations.

4.3. Nonlinear heat equations invariant under three-dimensional Lie algebras

We split the set of abstract three-dimensional Lie algebras into two classes. The first class
contains those algebras which are direct sums of lower-dimension ones. The remaining
algebras are included into the second class.

4.3.1. Equation (1.1) invariant with respect to decomposable algebras.The first Lie
algebra class contains two non-isomorphic algebras: namely,A3.1, A3.2. What is more,
A3.1 = 〈Q1,Q2,Q3〉, [Qi,Qj ] = 0 (i, j = 1, 2, 3), i.e. A3.1 = A1 ⊕ A1 ⊕ A1 = 3A1

and A3.2 = 〈Q1,Q2,Q3〉, where [Q1,Q2] = Q2, [Q1,Q3] = [Q2,Q3] = 0, i.e.
A3.2 = A2.2⊕ A1.

We summarize the classification results of nonlinear heat conductivity equations (1.1)
invariant under the three-dimensional Lie algebras belonging to the first class in table 1, where
we use the following notations:

A1
3.1 = 〈∂t , ∂x, ∂u〉

A1
3.2 = 〈−t∂t − 1

2x∂x, ∂t , ∂u〉
A2

3.2 = 〈−2t∂t − x∂x, ∂x, ∂u〉
A3

3.2 =
〈
−2t∂t − x∂x, ∂x,

√
|t |∂x + ∂u

〉
A4

3.2 = 〈∂x − u∂u, ∂u, α(t)∂x〉 α̇ 6= 0
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A5
3.2 = 〈∂x − u∂u, ∂u, ∂t 〉

A6
3.2 = 〈ε∂t − u∂u, ∂u, ∂x〉

A7
3.2 = 〈ε∂t − u∂u, ∂u, ∂t + λ∂x〉 λ > 0

and what is more,ε = ±1.

4.3.2. Equations (1.1) invariant with respect to non-decomposable algebras.Here we
consider those three-dimensional real Lie algebrasA3 = 〈Q1,Q2,Q3〉 that cannot be
decomposed into a direct sum of lower-dimensional Lie algebras. The list of these algebras is
exhausted by the two semi-simple Lie algebras

A3.3 : [Q1,Q3] = −2Q2 [Q1,Q2] = Q1 [Q2,Q3] = Q3

A3.4 : [Q1,Q2] = Q3 [Q2,Q3] = Q1 [Q3,Q1] = Q2

and the nilpotent Lie algebra

A3.5 : [Q2,Q3] = Q1 [Q1,Q2] = [Q1,Q3] = 0

and six solvable Lie algebras (non-zero commutation relations are given only)

A3.6 : [Q1,Q3] = Q1 [Q2,Q3] = Q1 +Q2

A3.7 : [Q1,Q3] = Q1 [Q2,Q3] = Q2

A3.8 : [Q1,Q3] = Q1 [Q2,Q3] = −Q2

A3.9 : [Q1,Q3] = Q1 [Q2,Q3] = qQ2 (0< |q| < 1)

A3.10 : [Q1,Q3] = −Q2 [Q2,Q3] = Q1

A3.11 : [Q1,Q3] = qQ1−Q2 [Q2,Q3] = Q1 + qQ2 q > 0.

The classification results of nonlinear heat conductivity equations (1.1) admitting the
three-dimensional Lie algebras from the second class are summarized in table 2, where the
following notations are used:

A1
3.3 = 〈∂t , t∂t + 1

2x∂x,−t2∂t − tx∂x + x2∂u〉
A1

3.5 = 〈∂x, ∂t , t∂x + ∂u〉
A2

3.5 = 〈∂u, ∂t , t∂u + λ∂x〉 λ > 0

A3
3.5 = 〈∂u, ∂x, x∂u + b(t)∂x〉 ḃ 6= 0

A4
3.5 = 〈∂u, ∂x, x∂u + λ∂t 〉 λ 6= 0

A5
3.5 = 〈∂u + 2λt∂x, ∂x, x∂u + 2λt [t∂t + x∂x − u∂u]〉 λ 6= 0

A1
3.6 = 〈∂u, ∂t , t∂t + 1

2x∂x + (u + t)∂u〉
A2

3.6 = 〈∂x, ∂u − 1
2 ln |t |∂x, 2t∂t + x∂x + u∂u〉

A3
3.6 = 〈∂u, ∂x, 2t∂t + x∂x + (u + x)∂u〉

A4
3.6 = 〈∂u, α∂x, α2(α̇)−1∂t + (1 +α)x∂x + [(1− α)u + x]∂u〉 α = α(t) α̇ 6= 0

and α2α̈ + 2(α̇)2 = 0

A1
3.7 = 〈∂t , ∂u, t∂t + 1

2x∂x + u∂u〉
A2

3.7 = 〈∂x, ∂u, 2t∂t + x∂x + u∂u〉
A1

3.8 = 〈∂t , ∂u, t∂t + 1
2x∂x − u∂u〉

A2
3.8 = 〈∂x, ∂u + λt∂x, 2t∂t + x∂x − u∂u〉 λ ∈ R

A1
3.9 = 〈∂t , ∂x, t∂t + 1

2x∂x〉
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Table 2. Equations (1.1) admitting three-dimensional Lie algebras from the second class.

Algebra FunctionF
A1

3.3
1
4u

2
x − x−1ux + x−2G(ω), ω = 2u− xux

A1
3.5 −uux +G(ux)

A2
3.5 λ−1x +G(ux), λ > 0, Guxux 6= 0

A3
3.5 − 1

2 ḃ(t)u
2
x +G(t), ḃ 6= 0

A4
3.5 G(ω), ω = t − λux, λ 6= 0 Gωω 6= 0

A5
3.5 −2λuux + t−3G(ω), ω = uxt2 − t

2λ , λ 6= 0
A1

3.6 2 ln |ux |G(ω), ω = x−1ux

A2
3.6

1
2 t
−1uux + |t |− 1

2G(ux),

A3
3.6 |t |− 1

2G(ω), ω = t−1u2
x , G 6= const,

√
ω

A4
3.6 −α̇uux + α−6 exp(2α−1)G(ω), ω = uxα4 − 2

3α
3

A1
3.7 G(ω), ω = x−1ux, Gωω 6= 0

A2
3.7 |t |− 1

2G(ux), Guxux 6= 0
A1

3.8 x−4G(ω), ω = x3ux, Gωω 6= 0

A2
3.8 −λuux + |t |− 3

2G(ω), ω = tux, λ ∈ R, λ2 +Gωω 6= 0
A1

3.9 u2
xG(u), Gu 6= 0

A2
3.9 G(ω), ω = u−1u2

x , Gω 6= 0
A3

3.9 x2(q−1)G(ω), ω = x1−2qux, Gωω 6= 0

A4
3.9 − 1

2λ(1− q)|t |−
1
2 (1+q)uux + |t | 12 (q−2)G(ω), ω = |t | 12 (1−q)ux, λ2 +G2

ωω 6= 0

A1
3.10 −λuux + (t2 + λ−2)−

3
2G(ω), ω = λux(t2 + λ−2)− t, λ 6= 0

A1
3.11 −α̇uux + (1 +α2)−

3
2 exp(q arctanα)G(ω), ω = ux(1 +α2)− α

A2
3.9 = 〈∂t , ∂x, t∂t + 1

2x∂x + u∂u〉
A3

3.9 = 〈∂t , ∂u, t∂t + 1
2x∂x + qu∂u〉 q 6= 0,±1

A4
3.9 = 〈∂x, ∂u + λ|t | 12 (1−q)∂x, 2t∂t + x∂x + qu∂u〉 0< |q| < 1 λ ∈ R

A1
3.10 = 〈∂x, λt∂x + ∂u,−λ(t2 + λ−2)∂t − λtx∂x + (λtu− x)∂u〉 λ 6= 0

A1
3.11 = 〈∂x, α∂x + ∂u,−(α̇)−1(1 +α2)∂t + (q − α)x∂x + [(α + q)u− x]∂u〉

q > 0 α = α(t) α̇ 6= 0 and (1 +α2)α̈ = 2q(α̇)2.

Note that the nonlinear ordinary differential equations

α2α̈ + 2(α̇)2 = 0 (4.16)

(1 +α2)α̈ = 2q(α̇)2 (4.17)

can be solved by quadratures. However, their general solutions are defined implicitly and
cannot be expressed via elementary functions.

The general solution of (4.16) reads as∫ α

exp(−2ξ−1) dξ = λt + λ1 {λ, λ1} ⊂ R λ 6= 0

and the general solution of (4.17) is given by the formula∫ α

exp(−2q arctanξ) dξ = λt + λ1 {λ, λ1} ⊂ R λ 6= 0.
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Table 3. Nonlinear PDEs (1.1) admitting four-dimensional Lie algebras.

No Equation Maximal
invariance
algebra

1 ut = uxx + λεux
4
√|t | ln |tu2

x | + βux√|t | , A1
4

ε = 1 for t > 0, ε = −1 for t < 0,β ∈ R, λ 6= 0
2 ut = uxx − λux(x + ln |ux |), λ 6= 0 A2

4
3 ut = uxx + λ exp(−ux), λ 6= 0 A3

4
4 ut = uxx + 2 ln |ux | A4

4

5 ut = uxx − ux ln |ux | + λux , λ ∈ R A5
4

6 ut = uxx + λu
2k−2
2k−1
x , λ 6= 0, k 6= 0, 1

2 , 1 A6
4

7 ut = uxx + 1
4t u

2
x A7

4

8 ut = uxx − uux + λ|ux | 32
λ 6= 0 A8

4
λ = 0 A5

9 ut = uxx + λ−1x +m
√|ux |, λ > 0,m 6= 0 A9

4

10 ut = uxx − λε
4 (1− q)|t |−

1
2 (1+q)u2

x

λ 6= 0, |q| 6= 1, ε = 1, t > 0, ε = −1, t < 0 A10
4

11 ut = uxx +m
√|t − λux |, λ ·m 6= 0 A11

4

12 ut = uxx − 1
2 α̇u

2
x + (λ− α)(1 +α2)−1, λ ∈ R A12

4

5. Complete group classification of equations (1.1) invariant under four-dimensional
Lie algebras

In this section we carry out group classification of nonlinear heat conductivity equations (1.1)
admitting four-dimensional Lie algebras. To this end, we use the known classification of
abstract four-dimensional Lie algebras [26] and the above-obtained classification of three-
dimensional Lie algebras which are symmetry algebras of nonlinear heat equations of the
form (1.1). Furthermore, for each invariant equation we compute the maximal symmetry
algebra in Lie’s sense, thus completing the classification.

We present all the results on classification of inequivalent essentially nonlinear PDEs (1.1)
that are invariant with respect to four-dimensional Lie algebras (decomposable and non-
decomposable) in table 3, where we use the following notations:

A1
4 =

〈
−2t∂t − x∂x, ∂x,−u∂u + λ

√
|t |∂x, ∂u

〉
λ 6= 0

A2
4 =

〈
∂x − u∂u, ∂u, 1

λ
∂t , e

λt ∂x

〉
λ 6= 0

A3
4 = 〈∂t , ∂u, ∂x, 2t∂t + x∂x + (u + x)∂u〉

A4
4 = 〈∂x, ∂u, ∂t , t∂t + 1

2x∂x + (u + t)∂u〉
A5

4 = 〈∂u, ∂x, ∂t , t∂x + u∂u〉
A6

4 = 〈∂t , ∂x, ∂u, t∂t + 1
2x∂x + ku∂u〉 k 6= 0, 1

2, 1

A7
4 = 〈∂u, ∂x, x∂u − 1

2 ln |t |∂x, 2t∂t + x∂x + 2u∂u〉
A8

4 = 〈∂x, ∂t , t∂x + ∂u, t∂t + 1
2x∂x − 1

2u∂u〉
A9

4 = 〈∂u, ∂t , t∂u + λ∂x, t∂t + 1
2x∂x + 3

2u∂u〉 λ > 0

A10
4 = 〈∂u, ∂x, x∂u + λ|t | 12 (1−q)∂x, 2t∂t + x∂x + (1 +q)u∂u〉 |q| 6= 1 λ 6= 0
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A11
4 = 〈∂u, ∂t , x∂u + λ∂t , 2t∂t + x∂x + 3u∂u〉, λ 6= 0

A12
4 = 〈∂u, ∂x, x∂u + α∂x,−(α̇)−1(1 +α2)∂t + (q − α)x∂x + [2qu− 1

2x
2]∂u〉

where q > 0 α = α(t) and α̇ 6= 0 is a solution of (4.17)

A5 = 〈∂x, t∂x + ∂u, ∂t ,−2t∂t − x∂x + u∂u, t
2∂t + tx∂x − (tu− x)∂u〉.

Note that, except for case 8 withλ = 0 the four-dimensional Lie algebras given in table 3 are
maximal symmetry algebras of the corresponding PDEs (for more details, see [29]). Case 8
with λ = 0 gives rise to the Burgers equation that is linearizable through the (non-local)
Cole–Hopf substitution.

6. Concluding remarks

We have established that there are three classes of equations (1.1) invariant with respect to one-
parameter groups (formulae (4.4)–(4.6)), seven classes of equations (1.1) invariant with respect
to two-parameter groups (formulae (4.7)–(4.9), (4.11), (4.12), (4.14), (4.15)), 28 classes of
equations (1.1) invariant with respect to three-parameter groups (tables 1 and 2) and 12 classes
of equations (1.1) invariant with respect to four-parameter groups (table 3). Furthermore, we
have proved that the four-dimensional Lie algebras given in table 3 are maximal symmetry
algebras in Lie’s sense admitted by the corresponding nonlinear heat equations with the only
exception being the linearizable Burgers equation.

In [29] we have proved that there are essentially no nonlinear equations of the form (1.1)
that admit invariance algebra of a dimension higher than four. To this end we utilize the Levi–
Maltsev theorem, some facts from the general theory of simple, semi-simple and solvable
Lie algebras and the above classification of inequivalent realizations of one-, two-, three- and
four-dimensional Lie algebras on the set of solutions of PDE (1.1). Consequently, the group
classification of invariant PDEs (1.1) obtained in the present paper is complete.

It is shown in [29] that the existing group classifications of subclasses of equations of
the form (1.1), that are due to Oron and Rosenau [22, 23], Dorodnitsyn [21], Serov and
Cherniha [25] and Gandarias [24], can be obtained from our classification as particular cases.

In the present paper we concentrate on studying essentially nonlinear heat conductivity
equations since the linear case is well investigated. However, it is fairly simple to recover the
corresponding results within the framework of our approach (see, e.g., [29]).

When classifying invariant equations (1.1) we utilize as equivalence transformations local
transformations of dependent and independent variables. Using non-local transformations, on
the one hand, may result in a reduction of a number of equivalence classes and, on the other
hand, may yield so-called quasi-local symmetries (for more detail on quasi-local symmetries
see, e.g., [11]). Consider, as an example, the following subclass of PDEs of the form (1.1):

ut = uxx + f1(t)u + f2(t, x, ux) (6.1)

with arbitrary smooth functionsf1, f2. If we differentiate (1.1) with respect tox and make a
change of the dependent variable

ux(t, x)→ v(t, x) (6.2)

then we get a subclass of quasi-linear PDEs of the form (1.1)

vt = vxx + f1(t)v + f2x(t, x, v) + f2v(t, x, v)vx. (6.3)

Evidently, the above two classes of PDEs (6.1) and (6.2) are inequivalent in the sense of the
definition given in section 3, since transformation (6.2) is not local.

The technique developed in the present paper can be efficiently applied to carry out group
classification of arbitrary classes of PDEs in two independent variables, since their maximal
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symmetry algebras are, as a rule, low-dimensional and we can use the classification of abstract
low dimensional Lie algebras.

These and the related problems are now under study and the results will be reported in
our future publications.
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